MONIMO KAKOYPTIOAIKEIO $\triangle A P N A K A \Sigma / A M M O X \Omega \Sigma T O Y$

 А.А. $\Pi \alpha \nu \tau \varepsilon \lambda \eta ́, ~ E . \Delta$.

Ар. Yло́ $\theta \varepsilon \sigma \eta \varsigma: 5021 / 19$
$\Delta \eta \mu о к р \alpha \tau і \alpha$

23 Avyov́cтov, 2019
Eupaviosts:

K $\alpha \tau \eta \gamma о \rho о$ и́ $\mu \varepsilon$ vo̧ $\pi \alpha, \rho \hat{\rho} \vee$

IIOINH

 $\alpha v \alpha \varphi \varepsilon ́ \rho о v \vee \tau \alpha$ ако́ $\lambda о v \theta \alpha$:

Ap. Kamү opía.c 10

Ap. Kain \quad оóíaç 11

О катпүорои́ $\mu \varepsilon v o \varsigma ~ \sigma \tau \iota \varsigma ~ 20.04 .2019 ~ \sigma \tau \eta \nu ~ E \pi \alpha \rho \chi i ́ \alpha ~ \Lambda \alpha ́ \rho v \alpha к \alpha \varsigma ~ \pi \rho о \mu \eta \theta \varepsilon v ́ \tau \eta к \varepsilon ~ \alpha \pi o ́ ~$

Ap. ка.пnүорías 12

 трототот $ө \eta к \varepsilon \mu \varepsilon ́ \chi \rho ı ~ б \eta ́ \mu \varepsilon \rho \alpha . ~$

 tov Y π oupүov́ Yүعíac.
 6(2), 30, 31 каı тov Mépov̧ II тоv Прஸ́tov Пívaка каı тоv Трítov Пívaка тоv

 á $\delta \varepsilon ı \alpha, ~ \tau о v ~ Y \pi о и \rho \gamma o v ́ ~ Y \gamma \varepsilon i ́ a s . ~$

Ap. калnүopías. 14

Ap. K $\alpha \tau \eta \gamma \quad$ оíac 15

 $\pi \rho о ́ \sigma \omega \pi \alpha$ к $\alpha \tau \alpha ́ \alpha \alpha \rho \alpha ́ \beta \alpha \sigma \eta \eta \tau \omega v \alpha ́ \rho \theta \rho \omega v 2,3,5(1), 6(3), 30,30 \mathrm{~A}, 31 \mathrm{M} \dot{\rho} \rho \circ v \varsigma$ II $\tau \circ v$

Ap. калnүopías. 16

Ta $\gamma \varepsilon \gamma \circ \vee o ́ \tau \alpha ~ \pi 0 \nu ~ \sigma \nu v \theta \varepsilon ́ t o v \nu ~ \tau \eta ~ \delta 1 \alpha ́ \pi \rho \alpha, \xi \eta ~ \tau \omega \nu ~ \alpha . \delta ı к \eta \mu \alpha ́ \tau \omega \nu ~ \varepsilon \xi \varepsilon \tau \varepsilon ́ \theta \eta \sigma \alpha \nu$

 $\pi ı \tau \alpha ́ \kappa \imath ~ \pi \alpha ́ v \omega ~ \sigma \tau о ~ о \pi о i ́ o ~ v \pi \eta ́ \rho \chi \alpha v ~ i ́ \chi \nu \eta ~ \alpha ́ \sigma \pi \rho \eta \varsigma ~ \sigma к o ́ v \eta \varsigma ~ к о к а і ̈ ท \eta \zeta, ~ \varepsilon ́ v \alpha ~ \delta ı \alpha \varphi \alpha v \varepsilon ́ \varsigma ~$

 лочขıкои́ $\mu \eta \tau \rho \omega ́ о \cup$.

 $\kappa \alpha \imath ~ \delta \varepsilon v ́ \tau \varepsilon \rho \eta ~ \tau \iota \mu \rho i ́ \alpha . ~ П \rho о \varsigma ~ v \pi о \sigma \tau \eta ́ \rho i \xi \eta ~ \tau о v ́ \tau \eta \varsigma ~ \tau \eta \varsigma ~ \theta \varepsilon ́ \sigma \eta \varsigma ~ o ~ \sigma v v \eta ́ \gamma о \rho o \varsigma ~$

 عivaı ol $\varepsilon \xi$ ท́s: Charalambos Tryfona alias Aloupos v. The Republic (1961) CLR 246, Nicos Demetriou Meytanis v. The Police (1966) 2 CLR 84, Andreas Louca Michael v. Police (1968) 2 CLR 133, Michalakis A. Xirishis v. The Republic (1969) 2 CLR 125, Menelaou v. Republic (1971) 2 CLR 146, Ioannou v. Police (1986) 2 CLR 149 каı Iliev v. Аұиократíaৎ П.E. 218/16, 18/1/2018.

 $\alpha \pi \lambda \eta \dot{\varsigma} \kappa \alpha \tau \circ \chi \dot{\jmath} \varsigma$.

 $\delta \varepsilon \cup \tau \varepsilon \rho \varepsilon v ́ o v \tau \alpha$ о́ $\mu \omega \varsigma$ ро́ ${ }^{\prime}$ 。.

 $\mu \varepsilon \gamma \alpha \lambda v ́ \tau \varepsilon \rho \eta \alpha \pi^{\prime} \varepsilon \kappa \varepsilon i ́ v \eta \pi о v$ вvтолі́бтךкє $\alpha \pi o ́ ~ \tau \eta \nu \alpha \sigma \tau v v o \mu i ́ \alpha ~(\kappa \alpha \tau \eta \gamma о \rho i ́ \alpha ~ 16), ~$

Ev к $\alpha \tau \alpha \kappa \lambda \varepsilon i ́ \delta ı ~ \eta ́ \tau \alpha \nu ~ \eta ~ \theta \varepsilon ́ \sigma \eta ~ \tau о v ~ \sigma v \nu \eta \gamma o ́ \rho o v ~ o ́ \tau ı ~ \sigma \tau \eta \nu ~ \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \tau о v ~$

 vó μ ov.

 т 0 .

 $\sigma \chi \varepsilon \delta i ́ \alpha \sigma \varepsilon \tau \eta \delta 1 \alpha ́ \pi \rho \alpha \xi \eta \eta \tau \omega v \alpha \delta ı \kappa \eta \mu \alpha ́ \tau \omega v$. $\Sigma \varepsilon \alpha v \tau \varepsilon ́ \varsigma \tau ו \varsigma ~ \theta \varepsilon ́ \sigma \varepsilon เ \varsigma ~ \delta \varepsilon v v \pi \eta ́ \rho \xi \varepsilon \alpha \nu \tau i ́ \lambda о \gamma \circ \varsigma$

 $\kappa \alpha_{1}$ ó χ в́ $\mu \pi о \rho о$.

«Tov́tov $\lambda \varepsilon \chi \theta \varepsilon ́ v \tau o \varsigma ~ \delta \varepsilon v ~ \mu \pi о \rho \varepsilon i ́ ~ \alpha \pi o ́ ~ \tau \eta \nu ~ \alpha ́ \lambda \lambda \eta ~ v \alpha ~ \varepsilon ı \pi \omega \theta \varepsilon i ́ ~ o ́ \tau l ~ \tau \varepsilon ́ \tau о ı \alpha, ~$
 $\varepsilon \pi \imath \beta о \lambda \eta ́ \varsigma ~ \pi о \imath v \eta ́ \varsigma, ~ \omega \varsigma ~ \mu ı \alpha \varsigma ~ \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta \varsigma ~ \pi о v ~ \alpha и о \rho \alpha ́ ~ \tau о ~ \alpha \delta i ́ к \eta \mu \alpha ~ \tau \eta \varsigma ~$ $\alpha \pi \lambda \eta ́ \varsigma ~ к \alpha \tau \sigma \chi \eta \dot{»}$.

 пиعן. 25.11.2015 каı Hassan v. Aбtvvouías (2006) 2 AAA 356).

 (2000) 2 AA 388). H $\delta \varepsilon$ к $\alpha v v \alpha \beta \eta ~ \alpha v ŋ ́ \rho \chi \varepsilon \tau о ~ \sigma \varepsilon ~ 453,83 ~ \gamma \rho \alpha \mu \mu \alpha ́ \rho ı \alpha, ~ \varepsilon v \omega ́ ~ к \alpha \tau о \chi \grave{~}$

 олоі́ о́ $\mu \omega \varsigma ~ 84$ үр $\alpha \mu \mu \alpha ́ \rho ı \alpha ~ \pi \rho о ́ \lambda \alpha \beta \varepsilon ~ к \alpha ı ~ \tau \alpha ~ \pi \rho о \mu \eta ́ \theta \varepsilon v \sigma \varepsilon . ~$

 о́тı $\tau \alpha \pi \rho о \mu \dot{\eta} \theta \varepsilon v \sigma \varepsilon \sigma \varepsilon \tau \rho$ тíто $\pi \rho о ́ \sigma \omega \pi о$.

 $\pi \rho о к \varepsilon ц \varepsilon ́ v ต ~ \eta ~ \tau о \pi о \theta \varepsilon ́ \tau \eta \sigma \eta ~ \tau о v ~ L o r d ~ W o o l f ~ \sigma \tau о ~ \sigma о ́ \gamma \gamma \rho \alpha \mu \mu \alpha ~ \pi о \nu ~ \varepsilon \pi ⿺ к \alpha \lambda \varepsilon ́ \sigma \tau \eta к \varepsilon ~ о ~$ ко૬ Подuхро́v, Mitigation: the role of personal factors in sentencing, ótu: 'Personal mitigation can play a critical part in the sentencing process. We sentence not just the offence but the offender.'

 $\kappa \alpha » ~ \sigma \tau о ~ \pi \rho о ́ \sigma \omega \pi о ~ т о v ́ \tau o v ~(~ \beta \lambda . ~ \Theta \varepsilon о \lambda a ́ \gamma o v ~ v ~ A c t v v o \mu i ́ a \varsigma, ~ П . Е . ~ 87 / 2014, ~ \eta \mu \varepsilon \rho . ~$

 Гıovvaкóкŋ v. Aбтvขoцías, II.E.177/15, пนєр. 21.4.2016).

 $\varepsilon \rho \gamma \alpha \sigma i ́ \alpha$ о甲єí $\lambda \varepsilon \tau \alpha l \sigma \tau$ о́ ó $\alpha \pi \varepsilon \lambda v \hat{\theta} \eta$.

 $\pi \rho о \sigma \omega ́ \pi \rho v$ v α 甲v $\lambda \alpha ́ \tau \tau \varepsilon \iota ~ \tau \alpha ~ v \alpha \rho \kappa \omega \tau \iota к \alpha ́ ~ \mu \varepsilon ~ \alpha v \tau \alpha ́ \lambda \lambda \alpha \gamma \mu \alpha$ то $\pi о \sigma o ́ ~ \tau \omega v ~ € 2.000$ ó $\tau \alpha v$

 'О $\pi \omega \varsigma$ vлобєі́ $\theta \eta \kappa \varepsilon ~ \sigma \tau \eta \nu ~ v \pi o ́ \theta \varepsilon \sigma \eta ~ J o v a n o v i c ~ \nu . ~ A \sigma \tau v v o \mu i ́ \alpha \varsigma ~(2005) ~ 2 ~ A A A ~ 635, ~$

 ठıкаıодоүоv́v $\sigma \cup \mu \mu \varepsilon \tau о \chi \eta ́ ~ \sigma \varepsilon ~ \delta 1 \alpha \sigma \pi о \rho \alpha ́ ~ v \alpha \rho \kappa \omega \tau \iota \kappa \omega ́ v . ~$

 $\pi о \delta о \sigma \varphi \alpha \iota \rho \iota \tau \bar{\prime}$.

«He drew our attention to the sentencing principles emerging on a review of our caselaw establishing that imprisonment in the case of young offenders is a measure of last resort and that in the case of young offenders in particular the likelihood of reform of the offender should be a very prominent consideration. This is a correct analysis of the sentencing principles relevant to young offenders so well established to need no support by reference to decided cases."

«The emphasis laid on deterrence by the learned trial Judge was misplaced for in the case of young offenders it must be balanced by the strong interest of society in the reform of the accused. In cases of young offenders the element of deterrence can only be allowed to be decisive if the offence is peculiarly prevalent among young persons; otherwise imprisonment can only be imposed if it appears to be justified as a measure of last resort.»

 $\pi о v ~ \varepsilon ́ \rho \chi o v \tau \alpha l ~ \varepsilon v \omega ́ \pi l o v ~ \tau \omega v ~ \delta ı к а \sigma \tau \eta \rho i ́ \omega v, ~ o ́ \chi \iota ~ \mu o ́ v o ~ \delta \varepsilon v ~ \varphi \alpha i v \varepsilon \tau \alpha l ~ v \alpha ~$

 27.5.2015, $\alpha \nu \alpha \varphi \dot{\rho} \rho \theta \eta \kappa \varepsilon$ ó τ -

 коl а.vтó тоv $\pi \alpha \rho \alpha ́ \gamma о v \tau \alpha, ~ \pi \alpha, \rho \alpha \tau \eta \rho \omega ́ v \tau \alpha \varsigma ~ o ́ \mu \omega \varsigma ~ \tau \alpha v \tau o ́ \chi \rho о v \alpha, ~ \mu \varepsilon ~$

 $\mu \varepsilon$ चך $\sigma и ́ v \tau \rho о \varphi o ́ ~ \tau о v ~ \mu \varepsilon \tau \alpha ́ ~ \tau \eta \nu ~ \alpha \pi о \varphi \nu \lambda \alpha ́ к ו \sigma \eta ́ ~ \tau о v, ~ \varepsilon i ́ t \varepsilon ~ \sigma \pi о v \delta \varepsilon ́ \varsigma, ~ \varepsilon i ́ \tau \varepsilon ~$

 то v va.oó $\tau \eta \varsigma ~ \eta \lambda \iota к i \alpha \varsigma ~ \tau о и ~ к \alpha \tau \eta \gamma о \rho о и ́ \mu \varepsilon v o v . ~$

 Kvрı́áкоv v \ұцократíaৎ (2013) 2 AAA 154.
 тıৎ $\pi \alpha \rho о v \sigma \varepsilon \varsigma ~ \sigma v v Ө \eta ं \kappa \varepsilon \varsigma ~ \pi о v ~ \eta ́ \tau \alpha \nu ~ \varepsilon \pi ’ ~ \alpha v \tau о \varphi о ́ \rho \omega ~ \eta ~ \sigma ט ́ \lambda \lambda \eta \psi \eta ~ \tau о v ~$

 $\delta \varepsilon v \pi \alpha i ́ \rho v o v v \sigma \alpha ́ \rho \kappa \alpha ~ \kappa \alpha \iota ~ о \sigma \tau \alpha ́ »$.

 пиєр. 21.4.2016).

 $\kappa \alpha \tau \eta \gamma о р о и ́ \mu \varepsilon v о \varsigma ~ \eta \lambda ı к i ́ \alpha \varsigma ~ 29 ~ \varepsilon \tau \dot{\omega}$, $\pi \alpha \rho \alpha \delta \varepsilon ́ \chi \theta \eta \kappa \varepsilon$, $\mu \varepsilon \tau \alpha \xi v \dot{\alpha} \alpha \lambda \lambda \omega v$, ка兀пүорí α

 $\kappa \alpha \tau \eta \gamma о \rho о и ́ \mu \varepsilon v o \varsigma ~ \mu \varepsilon \tau \varepsilon ́ \beta \eta ~ \sigma \tau о v ~ \pi \rho о \mu \eta \theta \varepsilon v \tau \eta ́ ~ \tau о v ~ \mu \varepsilon ~ \sigma к о \pi o ́ ~ v \alpha ~ \pi \alpha \rho \alpha \lambda \alpha ́ \beta \varepsilon ı ~ \tau \eta ~ \delta o ́ \sigma \eta ~$

 $\kappa \alpha \tau о \vee о ́ \mu \alpha . \sigma \varepsilon ~ \pi \rho о ́ \sigma \omega \pi \alpha ~ \pi о v ~ \varepsilon \mu \pi \lambda \varepsilon ́ к о \nu \tau \alpha \iota ~ \mu \varepsilon ~ \chi \rho \eta ́ \sigma \eta ~ к \alpha ı ~ \varepsilon \mu \pi о р i ́ \alpha, ~ \mu \varepsilon ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha, ~ v \alpha ~$

 $\gamma \rho \alpha \mu \mu \alpha ́ \rho \iota \alpha), \delta \varepsilon \nu$ عíval $\varepsilon u \kappa \alpha \tau \alpha \varphi \rho o ́ v \eta \tau \eta ~ \kappa \alpha l ~ \delta \varepsilon v ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \theta \varepsilon \omega \rho \eta \theta \varepsilon i ́ ~ \mu \kappa \rho \eta ́ . ~$

 vлєро́блıஎๆ.

 $\delta \varepsilon v \alpha v \varepsilon ́ \chi \varepsilon \tau \alpha \iota \tau \varepsilon ́ \tau \circ เ \varepsilon \varsigma ~ \sigma \cup \mu \pi \varepsilon \rho \downharpoonright \varphi \circ \rho \varepsilon ́ \varsigma$.
 $\varepsilon \kappa \varepsilon i v \eta ~ \tau \eta \varsigma ~ \varphi \nu \lambda \alpha ́ \kappa ı \sigma \eta \varsigma ~ \omega \varsigma ~ \alpha к о \lambda о ט ́ \theta \omega \varsigma: ~$

 катпүорі́а.
 катпү γ орí .

 Aбтvvouia. (1996) 2 A.A.A. 220).

(Y Y.):
N. Гı $\not \pi \alpha \nu \alpha ́ \varsigma, ~ П . Е . ~ \Delta . ~$
(Y π.):
N. T $\alpha \lambda \alpha \rho i ́ \delta o v-K o v \tau o \pi o v ́ \lambda o v, ~ E . \Delta . ~$
(Y Y.$)$:
М.А. Паvтєえท́, Е. Δ.

 Subject: promithia - katoxi nark.

/EA

